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Avalanching systems are treated analytically using the renormalization group �in the self-organized-
criticality regime� or mean-field approximation, respectively. The latter describes the state in terms of the mean
number of active and passive sites, without addressing the inhomogeneity in their distribution. This paper goes
one step further by proposing a kinetic description of avalanching systems making use of the distribution
function for clusters of active sites. We illustrate an application of the kinetic formalism to a model proposed
for the description of the avalanching processes in the reconnecting current sheet of the Earth’s magnetosphere.
A description of avalanching systems is proposed that makes use of the distribution function for clusters of
active sites. A general kinetic equation is derived that describes the temporal evolution of the distribution
function, in terms of growth and shrinking probabilities. The distribution of clusters is derived for the station-
ary regime, for a quite general class of avalanching systems or arbitrary dimensionality. The approach, includ-
ing the probability calculation, is illustrated by an application of the kinetic description to the recently proposed
burning model.
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I. INTRODUCTION

Many natural systems, which work in an open configura-
tion, respond to external disturbances showing scale-
invariant discrete events �1�. One common feature of these
systems is the development of a local threshold instability in
an avalanching manner. In the late 1980s, the concept of
self-organized criticality �SOC� was proposed by Bak et al.
�2� for the dynamical-statistical behavior of such systems.
SOC has been applied to a variety of systems �see Jensen �3�
and references therein for a list of some such systems�. Al-
though SOC can exist, strictly speaking, only in the limit of
infinitely slow external input, where a complete separation of
time scales is achieved �4�, it has also been applied to pre-
sumably avalanching systems with strong driving. A good
example of such systems is space plasma and, in particular,
the plasma in the Earth’s magnetotail under magnetic sub-
storm conditions �5�. Since SOC is questionable for such
strongly driven systems we, in what follows, address to them
as to avalanching systems, bearing in mind the avalanchelike
propagation of local instabilities. Up to date, the most often
used tool for studies of such systems is numerical modeling.
The usual analytical approaches proposed so far are the
renormalization group methods �see, e.g., Refs. �3,6� and ref-
erences therein�, and the mean-field description �see, e.g.,
Refs. �3,7� and references therein�. The renormalization
group methods assume scaling from the very beginning and
are applied only in the close vicinity of the stationary �criti-
cal� point, that is, in the self-organized criticality regime. The
mean-field approach is based on the analysis of the mean
number of active, passive, and critical sites. It is not re-
stricted to the criticality range, only including it as the limit
of the zero number of active sites. Mean-field approxima-
tions predict self-organized criticality in the limit of the zero
average number of active sites and, strictly speaking, are

applicable only for a system dimension exceeding some criti-
cal number, often well above the dimension of real physical
systems �8�. Mean-field obtained exponents are often consis-
tent with those found experimentally and numerically for
lower dimensions too, but no quantitative explanation is
given. On the other hand, deviations from these exponents
for real systems are quite usual. The mean-field approach
does not take into account the tendency of the active sites to
organize in clusters. Indeed, if avalanches of various dura-
tions and sizes are present, the distribution of active sites at
any moment should be very inhomogeneous. In the present
paper we propose a novel approach to the analytical descrip-
tion of avalanching systems that is based on the kinetic equa-
tion for the distribution function for active site clusters. We
demonstrate the power of the kinetic formalism, applying to
the model that was recently proposed as a model of the ava-
lanching reconnection in the current sheet of the Earth’s
magnetosphere �9�.

II. KINETIC EQUATIONS FOR CLUSTERS

The mean-field approach has the obvious drawback of
ignoring the fact that active sites have a tendency to appear
in clusters. These clusters are, in fact, the instantaneous snap-
shot of the developing avalanches, so that the size of each
cluster is time dependent, w=w�t�. However, when consider-
ing many coexisting clusters, we may describe their behavior
with the help of the distribution function f�w , t�=dN /dw,
where now the cluster size w and time t are independent
variables. The evolution of the single cluster size will be
translated into the evolution of the distribution function. The
total number of active sites is given by the integral
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Na = �
0

�

wf�w�dw . �1�

We have to introduce also the number of passive sites N�0�
�similar to what is done in case of a Bose gas, where the
number of particles in the lowest state is macroscopically
large�. Then Na+N�0�=const.

Let P+�w1 ,w2� be the probability of the cluster growth
�per unit time�, and P−�w1 ,w2� be the probability of shrink-
ing. Then

�f�w�
�t

= �
0

w

P+�w,w��f�w��dw� + �
w

�

P−�w,w��f�w��dw�

− �
w

�

P+�w�,w�f�w�dw� − �
0

w

P−�w�,w�f�w�dw�

+ ��w�N�0� −
f�w�
��w�

. �2�

The term ��w�N�0� in �2� describes the birth of active states
due to external driving, while the last term takes into account
the finite lifetime of clusters, i.e., the transition to the passive
state �Bose-Einstein condensation�. If the driving is suffi-
ciently strong and avalanche merging is not negligible, the
kinetic equation �2� should be completed with the time-
dependent “nonlinear” merging terms,

� �f�w�
�t

�
m

=� P1�w,w1,w2�f�w1�f�w2�

���w − w1 − w2�dw1 dw2

−� P1�w1,w,w2�f�w�f�w2�

���w1 − w − w2�dw1 dw2. �3�

Merging becomes progressively more important when the
average fractional density of active sites increases. When this
density is not too large �it does not have to be small though,
in contrast with the SOC regime�, merging will be still rela-
tively weak and can be further studied perturbatively. Strong
merging corresponds to the very strong driving, so that the
system behavior is, at least partially, forced externally. In the
present paper we assume that driving is moderate �not weak
and not exceptionally strong� so that merging can be ignored
at this stage, deferring treatment of very strongly driven sys-
tems to elsewhere. In our case one can expect that there is a
wide range �inertial interval� of cluster sizes in which the
distribution shape is independent of the external driving and
is determined by internal dynamics and/or space dimension.

In general, the distribution function f�w� would depend on
the growth and shrinking probabilities. We shall consider
here the class of systems where growth and shrinking occur
only at the boundaries of clusters. It should be noted that the
dynamics inside clusters may induce transitions between ac-
tive and passive sites, producing, e.g., “punctuated” clusters
for the classical sandpile model �2�, where an active site
becomes passive at the next step. We shall measure the size
of such a cluster, including the passive �receiving� sites as

well, so that the internal dynamics does not affect the cluster
size. The situation may be more complicated when clusters
are developed fractals, with tunnels appearing and crossing
the cluster �1�. Such systems would probably require special
treatment. We restrict ourselves here with the clusters that
grow or shrink at their boundaries. Space and laboratory
plasma systems �10� seem to belong to this class.

In this case the probabilities are nonzero only for
�w�−w�=�	w, so that �2� can be written as

�f

�t
= − P̃−�w�
�w�f�w� − P̃+�w�
�w�f�w�

+ P̃−�w + ��
�w + ��f�w + ��

+ P̃+�w − ��
�w − ��f�w − �� , �4�

where 
�w� is the density of states. This approximation is not
valid for small w, where the cluster kinetics should be
strongly affected directly by driving. We seek an approxi-
mate description of the cluster kinetics in the range where it
is determined, but the internal features of the system rather
than by external influence. It is obvious that if a large size
strong driving is applied, the reaction of the system would be
a forced reaction and not self-organized in any way.

The approximation may be not accurate for largest clus-
ters either, since the possible fractality �1� of clusters may
result in the breakdown of independence of probabilities at
neighboring active boundary sites. Indeed, all numerical
simulations �3� show distortions for very small and very
large w. Thus, the physical sense of our approximation is that
we are working in the inertial interval far from both limits.
According to existing analyses, such an interval exists almost
always.

For one-dimensional clusters 
�w�=1 or 
�w�=2 �the lat-
ter holds for growth in both directions�. This allows an im-
mediate n-dimensional generalization. Let w be a linear mea-
sure of a cluster �effective radius�, and let D be the cluster
volume. The density of states 
 is then the cluster surface
area. In general, D�w�, 
�w, n����n−1, where �
and  are fractal dimensions of the cluster volume and
boundary, respectively. Taylor expanding �4�, we arrive at the
following differential equation:

�f

�t
=

�

�w
��
f� +

�2

�w2 ��
f� , �5�

where �=��P̃−− P̃+� and �= ��2 /2��P̃−+ P̃+�. The stationary
solution,

f � �1/�
�exp	−� ��/��dw
 , �6�

exists only if ��0. In general, � and � can depend on w.
Both describe the local growth �shrinking� per site at the
cluster surface. Their dependence on the cluster size would
mean essentially that the growth and shrinking probabilities
as well as variation of the affected neighbor zone at some
site depend on what happens at other sites. While, in prin-
ciple, this cannot be excluded �waves could transfer informa-
tion across the cluster or long-range forces are involved �1��,
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many avalanche systems seem to be governed by local dy-
namics, so that it is natural to consider �at least at this stage�
the case of probabilities independent of w �see, however, the
comment in Sec. III�. One finds

f � 
−1 exp�− w/wc� = w− exp�− w/wc� , �7�

with wc=const. The obtained f =dN /dw describes the distri-
bution of linear sizes �effective radii�. For the distribution of
the cluster volumes, one has

dN

dD
=

dw

dD
·

dN

dw
� D�1−�−�/� exp�− AD1/�� . �8�

In the mean-field limit n�1 �7�, one has �dN /dD��D−2.
The derived expressions assume isotropy. If the system is

anisotropic and/or a preferential shape of cluster exists, e.g.
clusters are elongated �1�, the above treatment may have to
be modified by considering vector w describing linear sizes
along principal axes. These modifications are of a technical
character and do not change substantially the basic equations
and conclusions. Yet, they require a more lengthy analysis
and cannot be presented in a letter. We will provide this
analysis elsewhere.

III. BURNING MODEL

The above theory can be illustrated on the simple “burn-
ing” model �9� described below. In this model each site is
characterized by its temperature, T�x�. The external driving
is random heating of the sites. The amount q of heat per unit
time is going to a site with probability p, so that the average
heat transfer from outside �in driving� is pq. The temperature
of a passive site �the one that is not burning� changes accord-
ing to

dT

dt
= qp�1 − ��t�� , �9�

where ��t� is a random number, ����1, so that ���t���t���
=��t− t��. Once T�Tc, where Tc is some critical tempera-
ture, the site becomes active. An active site burns and pro-
duces heat at the rate J=�T, ��1. During the burning stage
the temperature decreases �unless driving is strong enough to
force permanent burning�. When the temperature drops be-
low some value Tl such that T�Tl�Tc, the burning ceases
and the site becomes passive again. Part of the heat release is
lost �radiated away�, while the other part, 2aJ, is transferred
�isotropically� to the closest neighbors. Summarizing the
above, the heat release can be written approximately as

J = �T��Tc − T���− dT/dt���T − Tl� + �T��T − Tc� ,

�10�

where ��x� is the step function. The term ��−dT /dt� is an
approximate manifestation of the history-dependent �hyster-
esis� burning for Tc�T�Tl �burning now if it was burning
at the previous moment/step and not burning otherwise�.
This expression is not quite correct for the temperature of a
site that does not have to change monotonically when an
avalanche develops. We leave the more detailed discussion

of this for another paper, especially devoted to this model.
For the purposes of the present discussion, such details
are irrelevant, and we consider �10� as a sufficiently precise
description of the burning process. If an active site would
be left alone, its temperature would decrease as T
=T�0�exp�−�t�. Here the quantity ��1/��ln�Tc /Tl� has the
meaning of the lifetime of an active site if it were not af-
fected either by other sites or external driving. Let �t be the
time step and �l the site size. The amount of heat a site x
receives is given by

dT�x�
dt

= qp�1 − ��t�� + a�J�x + �l� + J�x − �l�� − J�x� ,

�11�

which we write in the following form:

dT�x�
dt

= qp�1 − ��t�� + �2a − 1�J +
a�l

2

2

�2J

�x2 . �12�

Integrating �11� over a cluster of the size w, one gets

d

dt
� T dx = qpw + �2a − 1� � J dx − Jb, �13�

where we averaged over time the random fluctuations of the
input �. The meaning of the terms on the right-hand side is
quite obvious: the first term is the energy input due to exter-
nal driving, the second term is the radiation losses, and the
last term is the heat flux at the cluster boundaries.

The probability of growth should be proportional to the
heat flux from the active site at the cluster boundary to the
neighboring passive sites. This probability should depend on
the temperature of the passive sites. In the stationary regime
the time-average growth probability would be determined by
the average temperature Tp of passive sites. Thus, growth is
essentially independent of the cluster size. Respectively, the
shrinking probability depends on the state of the boundary
site and is not particularly sensitive to the cluster size either.
In this case the parameters � and � are constant, and one
expects that the cluster distribution is an exponential,
f �exp�−w /w0�. However, if the heat transfer in the active
area is suppressed �active sites do not easily accept heat
from active neighbors� spreading from the central regions
with the constant speed up to the cluster boundaries, one
estimates that P+�1/w, while P−const. In this case
�=��a1−a2 /w�, and �= �a1+a2 /w��2 /2, and f � �w
+w0��exp�−w /wc�, where w0, wc, and � are constants. In the
range w0	w	wc �if this such range does exist at all� a
power-law distribution should be observed. In the opposite
case, when the heat is transferred immediately from the in-
side to the cluster boundaries, P+�w and P−const, no sta-
tionary state can exist, since ��0 for sufficiently large w.
Such systems are unstable and are disrupted into avalanches
that will cover the entire system.

IV. CONCLUSIONS

We proposed a kinetic approach to the description of ava-
lanching systems, defining a distribution function f�w , t� for
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the clusters of active sites. In this way we derived a kinetic
equation for the temporal evolution of f�w , t� and analyzed
its steady-state limit in the inertial range, sufficiently far
from the smallest scales where driving explicitly shows up,
and sufficiently far from the larges scales where fractality
and merging become progressively more important. The sta-
tionary distribution function f�w� depends, in general, on the
probability of the microprocesses, resulting in cluster growth
and shrinking, that is, the processes governing the evolution
of avalanches. In the case of locally induced growth at the
boundaries, the shape of the distribution is determined by the
dimension of the system �or fractal dimensions of clusters if
they are not compact�. There is no sensitivity to the input
details. The obtained universal shape of the distributions is
not limited to the weak driving regime or to the system di-

mension above some critical value, and can be used for di-
rect and easy comparison with experiments and numerical
modeling. The total average driving should affect the state of
the system, as we have shown in a particular model. The
estimates given in the present model represent just the first
step toward a more elaborated kinetic model of the dynamics
of avalanches. We remark that our analytical predictions
have been checked by one-dimensional �1D� and 2D burning
model simulations to be reported elsewhere.
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